The code to do this is below (also in ../qsobias/Correlate/runCorrelation.py):
import numpy as N
from pylab import *
from correlationFunctions import *
#------------------------------------------------------------------------
# Set Angular Correlation Bin Information
#------------------------------------------------------------------------
oversample = 5. # Amount that randoms should be oversampled
corrBins = 15.0 # Number of correlation bins (+1)
mincorr = 0.1 # (Mpc/h comoving distance separation) Must be great than zero if log-binning
maxcorr = 10.0 # (Mphc/h comoving distance separation)
convo = 180./pi # conversion from degrees to radians
tlogbin = 1 # = 0 for uniform spacing, = 1 for log spacing in theta
#------------------------------------------------------------------------
# Create file names (full catalog)
#------------------------------------------------------------------------
workingDir = 'fullrun1'
makeworkingdir(workingDir)
galaxyDataFile, qsoDataFile, randomDataFile, corr2dCodefile, argumentFile, \
runConstantsFile = makeFileNamesFull(workingDir)
#------------------------------------------------------------------------
# Write run constants to a file (full catalog)
#------------------------------------------------------------------------
writeRunConstantsToFile(runConstantsFile, galaxyDataFile, qsoDataFile, \
randomDataFile, corr2dCodefile, argumentFile, oversample, corrBins, \
mincorr, maxcorr, tlogbin)
#------------------------------------------------------------------------
# Compute the Angular Correlation Function (full catalog)
#------------------------------------------------------------------------
runcrossCorrelation(workingDir, argumentFile, corr2dCodefile, galaxyDataFile,\
qsoDataFile, randomDataFile, mincorr, maxcorr, corrBins, tlogbin)
#------------------------------------------------------------------------
# Create file names (Left catalog)
#------------------------------------------------------------------------
workingDir = 'leftrun1'
makeworkingdir(workingDir)
galaxyDataFile, qsoDataFile, randomDataFile, corr2dCodefile, argumentFile, \
runConstantsFile = makeFileNamesLeft(workingDir)
#------------------------------------------------------------------------
# Write run constants to a file (Left catalog)
#------------------------------------------------------------------------
writeRunConstantsToFile(runConstantsFile, galaxyDataFile, qsoDataFile, \
randomDataFile, corr2dCodefile, argumentFile, oversample, corrBins, \
mincorr, maxcorr, tlogbin)
#------------------------------------------------------------------------
# Compute the Angular Correlation Function (Left catalog)
#------------------------------------------------------------------------
runcrossCorrelation(workingDir, argumentFile, corr2dCodefile, galaxyDataFile,\
qsoDataFile, randomDataFile, mincorr, maxcorr, corrBins, tlogbin)
#------------------------------------------------------------------------
# Create file names (Right catalog)
#------------------------------------------------------------------------
workingDir = 'rightrun1'
makeworkingdir(workingDir)
galaxyDataFile, qsoDataFile, randomDataFile, corr2dCodefile, argumentFile, \
runConstantsFile = makeFileNamesRight(workingDir)
#------------------------------------------------------------------------
# Write run constants to a file (Right catalog)
#------------------------------------------------------------------------
writeRunConstantsToFile(runConstantsFile, galaxyDataFile, qsoDataFile, \
randomDataFile, corr2dCodefile, argumentFile, oversample, corrBins, \
mincorr, maxcorr, tlogbin)
#------------------------------------------------------------------------
# Compute the Angular Correlation Function (Right catalog)
#------------------------------------------------------------------------
runcrossCorrelation(workingDir, argumentFile, corr2dCodefile, galaxyDataFile,\
qsoDataFile, randomDataFile, mincorr, maxcorr, corrBins, tlogbin)
#------------------------------------------------------------------------
# Must wait for jobs to finish running & output files to be created
#------------------------------------------------------------------------
#------------------------------------------------------------------------
# Plot Correlation Functions
#------------------------------------------------------------------------
#------------------------------------------------------------------------
# Plot Full Stripe 82
#------------------------------------------------------------------------
workingDir = "fullrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta,omega=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta, omega,'r-', label = "Full Stripe")
# Number of dd pairs in each bin
ddpairs = [3029, 5404, 9578, 17175, 31653, 58113, 106518, 194566, 358573, 656623, 1211740, 2234135, 4121513, 7602541, 13931607]
errors = 1/N.sqrt(ddpairs)
errorbar(theta, omega, yerr=errors,fmt='ro')
xlabel('Separation Distance (Mpc/h)')
ylabel('omega')
title('2D QSO-Galaxy Cross-correlation Function')
pylab.legend(loc=3)
(plots on wiki)
# Plot Full Stripe 82, Left-Half and Right-Half of Stripe 82
#------------------------------------------------------------------------
workingDir = "fullrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta,omega=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta, omega, label = "Full Stripe")
workingDir = "leftrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta1,omega1=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta1, omega1, label = "Left Stripe")
workingDir = "rightrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta2,omega2=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta2, omega2, label = "Right Stripe")
xlabel('Separation Distance (Mpc/h)')
ylabel('omega')
title('2D QSO-Galaxy Cross-correlation Function')
pylab.legend(loc=3)
(plots on wiki)
#------------------------------------------------------------------------
# Plot Full, Left-Half, Right-Half of Stripe 82, and Mean of all three + 3-sigma errors
#------------------------------------------------------------------------
workingDir = "fullrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta,omega=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta, omega, label = "Full Stripe")
workingDir = "leftrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta1,omega1=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta1, omega1, label = "Left Stripe")
workingDir = "rightrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta2,omega2=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta2, omega2, label = "Right Stripe")
datamaxtrix = [omega,omega1,omega2]
mean = N.mean(datamatrix,axis=0)
errors = 3*N.std(datamatrix,axis=0)/sqrt(3)
loglog(theta, mean, 'k-',label = "Mean")
errorbar(theta, mean, yerr=errors,fmt='ko')
xlabel('Separation Distance (Mpc/h)')
ylabel('omega')
title('2D QSO-Galaxy Cross-correlation Function')
pylab.legend(loc=3)
# Plot Full, Left-Half, Right-Half of Stripe 82, and Mean of all three + 3-sigma errors
#------------------------------------------------------------------------
workingDir = "fullrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta,omega=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta, omega, label = "Full Stripe")
workingDir = "leftrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta1,omega1=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta1, omega1, label = "Left Stripe")
workingDir = "rightrun1"
outfile = "./"+workingDir+"/wpsOutput.dat"
theta2,omega2=readCorrOutfile(outfile) #Reads correlation output file
loglog(theta2, omega2, label = "Right Stripe")
datamaxtrix = [omega,omega1,omega2]
mean = N.mean(datamatrix,axis=0)
errors = 3*N.std(datamatrix,axis=0)/sqrt(3)
loglog(theta, mean, 'k-',label = "Mean")
errorbar(theta, mean, yerr=errors,fmt='ko')
xlabel('Separation Distance (Mpc/h)')
ylabel('omega')
title('2D QSO-Galaxy Cross-correlation Function')
pylab.legend(loc=3)
(plots on wiki)
1) Try dividing the QSO samples into different redshift/brightness sets and see if we get different correlation results.
2) Implement jackknifing ability into the code.
No comments:
Post a Comment